Lecture 10: Markets, Prices, Supply and Demand
 See Barro Ch. 6

Trevor Gallen

Spring, 2016

Clearing Markets

- We have several important markets in the macroeconomy

1. Labor market (L, w)
2. Capital rental market (K, r)
3. Goods market (C, P)
4. Bonds market (B, i)

Markets

- What is rented on each market?

1. Labor market: person-hours
2. Capital rental market: machine-hours
3. Goods market: goods
4. Bonds market: dollars

- Note that we assume households will rent capital to firms
- Households supply capital, labor, bonds, demand consumption, bonds
- Firms supply consumption, bonds, demand labor, capital, bonds
- Use an arbitrary medium of exchange: money/"dollars"

Markets

- What is rented on each market?

1. Labor market: person-hours
2. Capital rental market: machine-hours
3. Goods market: goods
4. Bonds market: dollars (?)

- Note that we assume households will rent capital to firms
- Households supply capital, labor, bonds, demand consumption, bonds
- Firms supply consumption, bonds, demand labor, capital, bonds
- Use an arbitrary medium of exchange: money/"dollars"

Prices

- Define price P as dollars per consumption good
- This is price in "real terms"
- Then W / P is "person-hours/consumption unit"
- Then R / P is "machine-hours/consumption unit"
- We keep i, "dollars tomorrow for dollars today"

Household Income

- Households have four sources of income

1. Profit from owning firm
2. Wages from working
3. Rental income from capital
4. Interest income from bonds

Profit from owning firm

- Firms have production function:

$$
Y=A \cdot F(K, L)
$$

- And profit:

$$
\Pi=P Y-(W L+R K)
$$

- Together, these make profit:

$$
\Pi=A \cdot F(K, L) Y-(W L+R K)
$$

WAges from working

- Wages to households are WL

Rental income from capital

- (Net) rental income from capital is whatever we're paid minus whatever we lose
- Let δ be the rate at which capital falls apart
- Recall capital is in terms of consumption goods, so $\delta P K$ is loss
- Then net rental income is $R K-\delta P K$
- And rate of return of owning a unit of capital is $R-\delta P$

Interest income from bonds

- Net income from bonds is $i B$

Putting IT ALL TOGETHER

Nominal income:

$$
\Pi+w L+\left(\frac{R}{P}-\delta\right) P K+i B
$$

Assets

- Households have three assets

1. Money M, return: 0
2. Capital K, return: $R / P-\delta$
3. Bonds B return i

- No reason to hold money in our model (we'll get to this)
- If people hold both capital and bonds, return must be the same!

$$
\frac{R}{P}-\delta=i
$$

Putting it all together-II

Nominal income, given $\frac{R}{P}-\delta=i$:

$$
\Pi+w L+i(P K+B)
$$

Nominal Savings

- Changes in capital, bonds, and money are a source of nominal income:

Nominal Savings $=\Delta B+P \Delta K$

- Where we assume that $\Delta M=0$.

Putting it all Together-III

$$
\underbrace{P C}_{\text {Expenditure }}+\underbrace{\Delta B+P \Delta K}_{\text {Savings }}=\underbrace{\Pi+w L+i(B+P K)}_{\text {Income }}
$$

- PC: Nominal consumption
- ΔB : Nominal bond savings
- $P \Delta K$: Nominal capital savings
- П: Nominal profit income
- wL: Nominal wage income
- iB: Nominal bond income
- iPK: Nominal capital income

Be able to write and understand this basic equation!!

Putting it all together-IV

$$
\underbrace{P C}_{\text {Expenditure }}+\underbrace{\Delta B+P \Delta K}_{\text {Savings }}=\underbrace{\Pi+w L+i(B+P K)}_{\text {Income }}
$$

Divide by P :

$$
\underbrace{C}_{\text {Real Expenditure }}+\underbrace{\frac{\Delta B}{P}+\Delta K}_{\text {Real Savings }}=\underbrace{\frac{\Pi}{P}+\frac{w}{P} L+i\left(\frac{B}{P}+K\right)}_{\text {Real Income }}
$$

Clearing Labor Markets

- Recall again nominal profit:

$$
\Pi=\operatorname{PAF}(K, L)-w L-R K
$$

- Or real profit:

$$
\frac{\Pi}{P}=A F(K, L)-\frac{w}{P} L-\frac{R}{P} K
$$

Maximizing Profit

$-\frac{\partial \Pi / P}{\partial L}$

$$
\frac{\partial \Pi / P}{\partial L}=\frac{\partial A F(K, L)}{\partial L}-\frac{\partial \frac{w}{P} L}{\partial L}-\frac{\partial \frac{R}{P} K}{\partial L}
$$

If profit is maximized, then a change in L won't change profit:

$$
\begin{gathered}
0=A F_{L}(K, L)-\frac{w}{P} \\
A F_{L}(K, L)=\frac{w}{P}
\end{gathered}
$$

This is the labor demand function

- Similarly, $\frac{\partial \Pi / P}{\partial K}$ gives:

$$
A F_{K}(K, L)=\frac{R}{P}
$$

This is the capital demand function

LABOR MARKET CLEARING

LABOR MARKET CLEARING

Summarizing

- This may have been painful and boring
- Understanding the budget constraint and tweaks to it will take up the next few chapters

- Every outflow is also an inflow
- Income to firms is income to households
- In the end, someone consumes the good, so what is made must be eaten (so to speak)

